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Problem Statement…

A linear equation with n unknown variables
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A finite set of n linear equations is called a system of linear 
equations or a linear system
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or in the matrix form:
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Problem Statement

The solution of the linear system is the values of the 
unknown vector x, that satisfy every equation in the 
linear system for the given matrix A and vector b
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The Gauss method – sequential algorithm…

The main idea of the method  is by using the 
equivalent operations to transform a dense system 
into an upper triangular system, which can be easily 
solved

Equivalent transformations:
– Multiplying an equation by a nonzero constant,

– Interchanging two equations,

– Adding an equation multiplied by a constant to another 
equation.
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The Gauss method – sequential algorithm…

On the first stage of the algorithm, which is called the Gaussian 
elimination, the initial system of linear equations is transformed 
into an upper triangular system by the sequential elimination of
unknowns:
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On the second stage of the algorithm, which is called the 
back substitution, the values of the variables are calculated
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The Gauss method – sequential algorithm…

Gaussian elimination:
− At step i, 0≤ i<n-1, of the algorithm the nonzero elements 
below the diagonal  in column i are eliminated by replacing each 
row k, where i< k≤ n-1, with the sum of the row k and the row i
multiplied by the value (-aki /aii),
− All the necessary calculations are determined by the 
equations:
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The Gauss method – sequential algorithm…

Scheme of data at the i-th iteration of the Gaussian 
elimination

Elements already 
driven to 0

Elements that will 
not be changed

Pivot row 

Elements that will 
be changed
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The Gauss method – sequential algorithm

Back substitution
After the matrix of the linear system was transformed to the upper 
rectangular type, it becomes possible to calculate the unknown variables:

• We can solve the last equation directly, since it has only a single 
unknown xn-1 ,

• After we have determined  the xn-1 , we can simplify the other equations 
by substituting the value of xn-1 ,

• Then the equation n-2 has only the single unknown xn-2 and can be 
solved and so on.

The calculations of the back substitution can be represented as follows:
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The Gauss method – parallel algorithm…

Basic subtasks:
– All calculations are the uniform row operations of the matrix A, 

– Data parallelism can be exploited to design parallel 
computations for the Gauss algorithm,

– The calculations, that corresponds to one equation of the 
linear system, can be chosen as the basic subtask.
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The Gauss method – parallel algorithm…

Analysis of Information Dependencies…
– Every iteration i of the Gaussian elimination algorithm 

consists of:
• Choosing the pivot row – all subtasks k (k≥i) have to 

exchange their matrix A values from the column with the 
eliminated variable xi to find the row with absolute maximum 
value, the corresponding row becomes the pivot for the current 
iteration,

• Sending the pivot row to all of the subtasks, which number k is 
greater than i (k>i),

• Subtracting the pivot row from rows of the subtasks k (k>i)
(eliminating the unknown xi).
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The Gauss method – parallel algorithm…

Analysis of Information Dependencies:
– While executing the iterations of the back substitution, the 

subtasks perform necessary actions to obtain the values of 
the unknowns:

• After the subtask i, 0≤i<n-1, have calculated the value of the 
unknown xi, this value must be sent to all the subtasks k, k<i,

• Then all the subtasks substitute the received value to their 
equation of the linear system and adjust their value of b.
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The Gauss method – parallel algorithm…

Scaling and Subtasks Distributing among the 
Processors…

– In case when the number of processors p is less than the number of the 
rows (p<n), the basic subtasks can be aggregated in such a way that 
each processor would process several equations of the linear system

The usage of Rowwise Cyclic-Striped Decomposition
allows to achieve best characteristics of calculation 

load balancing among  the subtasks
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The Gauss method – parallel algorithm…

Scaling and Subtasks Distributing among the 
Processors:
– The main form of communication interactions of the 

subtasks is the one-to-all broadcast, 
– As a result, for the effective implementation of data 

transmission operations between the basic subtasks the 
topology of the data transmission network must have the 
a hypercube or the complete graph structure.
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The Gauss method – parallel algorithm…

Efficiency Analysis:
– Speed-up and Efficiency generalized estimates
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Balancing of the calculation load among the 
processors, in general, is enough uniform
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The Gauss method – parallel algorithm…

Efficiency Analysis (detailed estimates)…
- Time of parallel algorithm execution, that corresponds to the 

processor calculations, consists of:
• Time of the Gaussian elimination (n-1 iterations):
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• Time of the back substitution (n-1 iteration):

the first step is to chose the maximum value in the column with the 
eliminated variable,
the subtraction of the pivot row from all of the rest rows of matrix A stripe:

The adjusting of the vector b elements after the broadcast of the
calculated value of the unknown variable:
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The Gauss method – parallel algorithm…

Efficiency Analysis (detailed estimates)…
-Time of communication operations can be obtained by means of
the Hockney model:
• the Gaussian elimination:

To determine the pivot row the processors exchange the local maximum
values of the column with the eliminated unknown (MPI_Allreduce):

( ) )/(log)1( 2
1 βα wpncommTp +⋅⋅−=

To broadcast of the pivot row:

( ) )/(log)1( 2
2 βα nwpncommTp +⋅⋅−=

• Back Substitution:
At each iteration the processor broadcasts the calculated element of
the result vector to all of the rest processors:

( ) )/(log)1( 2
3 βα wpncommTp +⋅⋅−=
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The Gauss method – parallel algorithm…

Efficiency Analysis (detailed estimates):

Total time of parallel algorithm execution is:
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The Gauss method – parallel algorithm…

Description of the parallel program sample…
– The main function. Performs the main actions of the algorithm by 

calling the necessary functions sequentially:
• ProcessInitialization initializes the data of the problem,
• ParallelResultCalculation carries out the parallel Gauss 

algorithm,
• ResultCollection gathers the blocks of the result vector from 

the processors,
• ProcessTermination outputs the results of problem solving 

and deallocates the memory, which was used to store the 
necessary data.
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The Gauss method – parallel algorithm…

Description of the parallel program sample…
– The main function. This function uses the arrays:

• pParallelPivotPos determines the positions of the rows, that have been 
chosen as pivot rows at the iterations of the Gaussian elimination 
algorithm; as a result, elements of this array determines the order of the 
back substitution algorithm iterations (this array is global, every 
changing of  its elements has to be accompanied by the communication 
operation of  sending the changed data to all of the rest processors),

• pProcPivotIter determines the numbers on the Gaussian elimination 
iterations, that uses  the rows of the current processor as pivots; zero 
value of the array element means that the corresponding row have to 
be processed during the Gaussian elimination iteration (each processor 
has the local array pProcPivotIter ).

Code
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The Gauss method – parallel algorithm…

Description of the parallel program sample…
– The function ParallelResultCalculation. This function uses the arrays:

• This function contains the calls of the functions for executing the Gauss 
algorithm stages

Code
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The Gauss method – parallel algorithm…

Description of the parallel program sample…
– The function ParallelGaussianElimination executes the 

parallel variant of the Gaussian elimination algorithm

Code

• The function ParallelEliminateColumns carries out the subtraction 
of the pivot row from the rows, that are held by the same processor 
and haven’t been used as pivots yet (the corresponding elements 
of the array pProcPivotIter are equal to zero)
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The Gauss method – parallel algorithm…

Description of the parallel program sample:
– The function BackSubstitution implements  the parallel 

variant of the back substitution algorithm.

Code
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The Gauss method – parallel algorithm…

Results of computational experiments…
– Comparison of theoretical estimations and results of 

computational experiments
2 processors 4 processors 8 processors

Model Experiment Model Experiment Model Experiment

500 0,2393 0,3302 0,2819 0,5170 0,3573 0,7504

1000 1,3373 1,5950 1,1066 1,6152 1,1372 1,8715

1500 4,0750 4,1788 2,8643 3,8802 2,5345 3,7567

2000 9,2336 9,3432 5,9457 7,2590 4,7447 7,3713

2500 17,5941 16,9860 10,7412 11,9957 7,9628 11,6530

3000 29,9377 28,4948 17,6415 19,1255 12,3843 17,6864
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The Gauss method – parallel algorithm

Results of computational experiments:
– Speedup

Parallel Algorithm

2 processors 4 processors 8 processors

Time Speed Up Time Speed Up Time Speed Up

500 0,36 0,3302 1,0901 0,5170 0,6963 0,7504 0,4796

1000 3,313 1,5950 2,0770 1,6152 2,0511 1,8715 1,7701

1500 11,437 4,1788 2,7368 3,8802 2,9474 3,7567 3,0443

2000 26,688 9,3432 2,8563 7,2590 3,6765 7,3713 3,6204

2500 50,125 16,9860 2,9509 11,9957 4,1785 11,6530 4,3014

3000 85,485 28,4948 3,0000 19,1255 4,4696 17,6864 4,8333
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The Conjugate Gradient Method…

Iterative Methods for Solving Systems of Linear 
Equations:
– Come up with a series of approximations x0, x1,…, xk,…, to 

the value of the solution x* of the system Ax=b,
– Each following approximation gives the estimation of the 

solution value with the decreasing approximation error, 
– The estimation for the exact solution can be obtained with 

any definite accuracy.

The conjugate gradient method – one of the well known 
iterative algorithms for solving systems of linear equations
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The Conjugate Gradient Method…

The conjugate gradient method can be applied to 
solve the system of linear equations with the 
symmetric and positive definite matrix:
– A n×n matrix A is symmetric if it is equal to its transposed 

matrix, i.e. А=АТ, 

– A n×n matrix A is positive definite if for every nonzero 
vector x and its transpose xT, the product xTAx > 0

If calculation errors are ignored, the conjugate 
gradient method is guaranteed to converge to a 
solution in n or fewer iterations
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The Conjugate Gradient Method – Sequential Algorithm…

If A is symmetric and positive definite, then the 
function

cbxxAxxq TT +−⋅⋅=
2
1)(

has a unique minimizer that is the solution of the 
system Ax=b

The conjugate gradient method is one of many iterative 
algorithms that solve Ax=b by minimizing q(x)
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The Conjugate Gradient Method – Sequential Algorithm…

An iteration of the conjugate gradient method is of 
the form:

kkkk dsxx += −1

where
xk – a new approximation of x,
xk-1 – a approximation of x, which was computed on 

the previous step,
sk – a scalar step size,
dk – a direction vector.
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The Conjugate Gradient Method – Sequential Algorithm…

Before the first iteration, x0 and d0 are both initialized to the zero 
vector and  g0 is initialized to –b.

Step 1: Compute the gradient

Step 2: Compute the direction vector

Step 3: Compute the step size

Step 4: Compute the new approximation of x

bxAg kk −⋅= −1
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The algorithm’s complexity is T1 = 2n3+13n2
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The Conjugate Gradient Method – Sequential Algorithm

Iterations of the conjugate gradient method for solving the 
system of two linear equations:
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The Conjugate Gradient Method – Parallel Algorithm…

Parallel Computation Design
– Iterations of the conjugate gradient method can be executed 

only in sequence, so the most advisable approach is to 
parallelize the computations, that are carried out at each 
iteration,

– The most time-consuming computations are the multiplication 
of matrix A by the vectors x and d,

– Additional operations, that have the lower computational 
complexity order, are different vector processing procedures 
(inner product, addition and subtraction, multiplying by a scalar).

While implementing the parallel conjugate gradient method, 
it can be used parallel algorithms of matrix-vector multiplication, 

that was described in the section 7 in detail
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The Conjugate Gradient Method – Parallel Algorithm…

Efficiency Analysis…
(using the parallel algorithm of matrix-vector multiplication, which is 
based on rowwise block-striped matrix decomposition, vectors are 
copied to all processors)

– The computation complexity of the parallel algorithm of matrix-
vector multiplication based on the rowwise block-striped matrix 
decomposition:

( ) ⎡ ⎤ ( )122 −⋅= npnncalcTp

– As a result, when all vectors are copied to all processors, the 
total calculation complexity of the parallel conjugate gradient 
method is equal to:

⎡ ⎤ ( )( )nnpnnT p 13122 +−⋅=
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The Conjugate Gradient Method – Parallel Algorithm…

Efficiency Analysis…
– Speed-up and Efficiency generalized estimates

⎡ ⎤ ( )( ) ,13122
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Balancing of the calculation load among the processors, 
in general, is enough uniform



Nizhni Novgorod, 2005 Introduction to Parallel Programming: Solving Linear Systems
© Gergel V.P. 35 → 45

The Conjugate Gradient Method – Parallel Algorithm…

Efficiency Analysis (detailed estimates):
– Time of the data communication operations can be 

obtained by means of the Hockney model (section 7):

( ) ⎡ ⎤( )βα /)1)(/(log2 −+⋅= ppnwpncommTp

– Total time of the parallel conjugate gradient algorithm 
execution is:

⎡ ⎤ ( )( ) ⎡ ⎤( )[ ]βατ /)1)(/(log213122 −+⋅+⋅+−⋅⋅= ppnwpnnpnnTp
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The Conjugate Gradient Method – Parallel Algorithm…

Results of computational experiments…
– Comparison of theoretical estimations and results of 

computational experiments
2 processors 4 processors 8 processors

Model Experiment Model Experiment Model Experiment

500 1,3042 0,4634 0,6607 0,4706 0,3390 1,3020

1000 10,3713 3,9207 5,2194 3,6354 2,6435 3,5092

1500 34,9333 17,9505 17,5424 14,4102 8,8470 20,2001

2000 82,7220 51,3204 41,4954 40,7451 20,8822 37,9319

2500 161,4695 125,3005 80,9446 85,0761 40,6823 87,2626

3000 278,9077 223,3364 139,7560 146,1308 70,1801 134,1359
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The Conjugate Gradient Method – Parallel Algorithm

Results of computational experiments:
– Speedup

Parallel Algorithm

2 processors 4 processors 8 processors

Time Speed Up Time Speed Up Time Speed Up

500 0,5 0,4634 1,0787 0,4706 1,0623 1,3020 0,3840

1000 8,14 3,9207 2,0761 3,6354 2,2390 3,5092 2,3195

1500 31,391 17,9505 1,7487 14,4102 2,1783 20,2001 1,5539

2000 92,36 51,3204 1,7996 40,7451 2,2667 37,9319 2,4348

2500 170,549 125,3005 1,3611 85,0761 2,0046 87,2626 1,9544

3000 363,476 223,3364 1,6274 146,1308 2,4873 134,1359 2,7097
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Summary…

Two parallel algorithms for solving systems of linear 
equations are discussed:
– The Gauss Method,
– The Conjugate Gradient Method

The parallel program sample for the Gauss algorithm 
is described
Theoretical estimations and results of computational 
experiments show the greater efficiency of the 
Gauss method



Nizhni Novgorod, 2005 Introduction to Parallel Programming: Solving Linear Systems
© Gergel V.P. 39 → 45

Summary

The speedup of the parallel algorithms for solving 
linear system of 3000 equations
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Discussions 

What is the reason of such low estimations for 
speedup and efficiency of parallel algorithms?

Is there a way to increase the speedup and 
efficiency characteristics?

What algorithm has the greater computational 
complexity?

What is the main advantage of the iterative 
methods for solving the linear systems?
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Exercises

Develop the parallel programs for the Gauss method 
based on columnwise block-striped decomposition 

Develop the parallel programs for the  Jacobi and 
Zeidel method based on columnwise block-striped 
decomposition 

Formulate the theoretical estimations for the execution 
time of these algorithms. Execute programs. Compare 
the time of computational experiments and the 
theoretical estimations being obtained
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Next Section

Parallel Sorting Methods
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About the project

The purpose of the project is to develop the set of educational materials for the 
teaching course “Multiprocessor computational systems and parallel programming”. 
This course  is designed for the consideration of the parallel computation problems, 
which are stipulated in the recommendations of IEEE-CS and ACM Computing 
Curricula 2001. The educational materials can be used for teaching/training 
specialists in the fields of informatics, computer engineering and information 
technologies. The curriculum consists of the training course “Introduction in the 
methods of parallel programming” and the computer laboratory training “The 
methods and technologies of parallel program development”. Such educational 
materials makes possible to seamlessly combine both the fundamental education in 
computer science and the practical training in the methods of developing the 
software for solving complicated time-consuming computational problems using the 
high performance computational systems. 

The project was carried out in Nizhny Novgorod State University, the Software 
Department of the Computing Mathematics and Cybernetics Faculty 
(http://www.software.unn.ac.ru). The project was implemented with the support of 
Microsoft.

http://www.software.unn.ac.ru/
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